Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Islets ; 15(1): 2223327, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37415404

RESUMEN

Of the ß-cell signaling pathways altered by obesity and insulin resistance, some are adaptive while others contribute to ß-cell failure. Two critical second messengers are Ca2+ and cAMP, which control the timing and amplitude of insulin secretion. Previous work has shown the importance of the cAMP-inhibitory Prostaglandin EP3 receptor (EP3) in mediating the ß-cell dysfunction of type 2 diabetes (T2D). Here, we used three groups of C57BL/6J mice as a model of the progression from metabolic health to T2D: wildtype, normoglycemic LeptinOb (NGOB), and hyperglycemic LeptinOb (HGOB). Robust increases in ß-cell cAMP and insulin secretion were observed in NGOB islets as compared to wildtype controls; an effect lost in HGOB islets, which exhibited reduced ß-cell cAMP and insulin secretion despite increased glucose-dependent Ca2+ influx. An EP3 antagonist had no effect on ß-cell cAMP or Ca2+ oscillations, demonstrating agonist-independent EP3 signaling. Finally, using sulprostone to hyperactivate EP3 signaling, we found EP3-dependent suppression of ß-cell cAMP and Ca2+ duty cycle effectively reduces insulin secretion in HGOB islets, while having no impact insulin secretion on NGOB islets, despite similar and robust effects on cAMP levels and Ca2+ duty cycle. Finally, increased cAMP levels in NGOB islets are consistent with increased recruitment of the small G protein, Rap1GAP, to the plasma membrane, sequestering the EP3 effector, Gɑz, from inhibition of adenylyl cyclase. Taken together, these results suggest that rewiring of EP3 receptor-dependent cAMP signaling contributes to the progressive changes in ß cell function observed in the LeptinOb model of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Islotes Pancreáticos , Ratones , Animales , Secreción de Insulina , Glucosa/farmacología , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Leptina/metabolismo , Leptina/farmacología , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Obesidad
2.
Elife ; 112022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997256

RESUMEN

Pyruvate kinase (PK) and the phosphoenolpyruvate (PEP) cycle play key roles in nutrient-stimulated KATP channel closure and insulin secretion. To identify the PK isoforms involved, we generated mice lacking ß-cell PKm1, PKm2, and mitochondrial PEP carboxykinase (PCK2) that generates mitochondrial PEP. Glucose metabolism was found to generate both glycolytic and mitochondrially derived PEP, which triggers KATP closure through local PKm1 and PKm2 signaling at the plasma membrane. Amino acids, which generate mitochondrial PEP without producing glycolytic fructose 1,6-bisphosphate to allosterically activate PKm2, signal through PKm1 to raise ATP/ADP, close KATP channels, and stimulate insulin secretion. Raising cytosolic ATP/ADP with amino acids is insufficient to close KATP channels in the absence of PK activity or PCK2, indicating that KATP channels are primarily regulated by PEP that provides ATP via plasma membrane-associated PK, rather than mitochondrially derived ATP. Following membrane depolarization, the PEP cycle is involved in an 'off-switch' that facilitates KATP channel reopening and Ca2+ extrusion, as shown by PK activation experiments and ß-cell PCK2 deletion, which prolongs Ca2+ oscillations and increases insulin secretion. In conclusion, the differential response of PKm1 and PKm2 to the glycolytic and mitochondrial sources of PEP influences the ß-cell nutrient response, and controls the oscillatory cycle regulating insulin secretion.


Asunto(s)
Adenosina Trifosfato , Piruvato Quinasa , Adenosina Difosfato , Adenosina Trifosfato/metabolismo , Aminoácidos , Animales , Ratones , Nutrientes , Isoformas de Proteínas , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
3.
Elife ; 102021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34231467

RESUMEN

The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among ß cells, yet testing this in vivo in the intact pancreas is challenging. Robo ßKO mice, in which the genes Robo1 and Robo2 are deleted selectively in ß cells, provide a unique model of altered islet spatial architecture without loss of ß cell differentiation or islet damage from diabetes. Combining Robo ßKO mice with intravital microscopy, we show here that Robo ßKO islets have reduced synchronized intra-islet Ca2+ oscillations among ß cells in vivo. We provide evidence that this loss is not due to a ß cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.


Asunto(s)
Secreción de Insulina/fisiología , Células Secretoras de Insulina/fisiología , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/metabolismo , Animales , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Proteína delta-6 de Union Comunicante , Proteínas Roundabout
4.
Cell Rep ; 34(4): 108690, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33503433

RESUMEN

Hallmarks of mature ß cells are restricted proliferation and a highly energetic secretory state. Paradoxically, cyclin-dependent kinase 2 (CDK2) is synthesized throughout adulthood, its cytosolic localization raising the likelihood of cell cycle-independent functions. In the absence of any changes in ß cell mass, maturity, or proliferation, genetic deletion of Cdk2 in adult ß cells enhanced insulin secretion from isolated islets and improved glucose tolerance in vivo. At the single ß cell level, CDK2 restricts insulin secretion by increasing KATP conductance, raising the set point for membrane depolarization in response to activation of the phosphoenolpyruvate (PEP) cycle with mitochondrial fuels. In parallel with reduced ß cell recruitment, CDK2 restricts oxidative glucose metabolism while promoting glucose-dependent amplification of insulin secretion. This study provides evidence of essential, non-canonical functions of CDK2 in the secretory pathways of quiescent ß cells.


Asunto(s)
Linfocitos B/metabolismo , Quinasa 2 Dependiente de la Ciclina/uso terapéutico , Canales KATP/efectos de los fármacos , Animales , Quinasa 2 Dependiente de la Ciclina/farmacología , Humanos , Ratones
5.
Cell Metab ; 32(5): 736-750.e5, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147484

RESUMEN

Pancreatic ß cells couple nutrient metabolism with appropriate insulin secretion. Here, we show that pyruvate kinase (PK), which converts ADP and phosphoenolpyruvate (PEP) into ATP and pyruvate, underlies ß cell sensing of both glycolytic and mitochondrial fuels. Plasma membrane-localized PK is sufficient to close KATP channels and initiate calcium influx. Small-molecule PK activators increase the frequency of ATP/ADP and calcium oscillations and potently amplify insulin secretion. PK restricts respiration by cyclically depriving mitochondria of ADP, which accelerates PEP cycling until membrane depolarization restores ADP and oxidative phosphorylation. Our findings support a compartmentalized model of ß cell metabolism in which PK locally generates the ATP/ADP required for insulin secretion. Oscillatory PK activity allows mitochondria to perform synthetic and oxidative functions without any net impact on glucose oxidation. These findings suggest a potential therapeutic route for diabetes based on PK activation that would not be predicted by the current consensus single-state model of ß cell function.


Asunto(s)
Insulina/metabolismo , Piruvato Quinasa/metabolismo , Animales , Línea Celular , Humanos , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL
6.
J Biol Chem ; 294(12): 4656-4666, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30700550

RESUMEN

ß-Cell mitochondria play a central role in coupling glucose metabolism with insulin secretion. Here, we identified a metabolic function of cyclin-dependent kinase 1 (CDK1)/cyclin B1-the activation of mitochondrial respiratory complex I-that is active in quiescent adult ß-cells and hyperactive in ß-cells from obese (ob/ob) mice. In WT islets, respirometry revealed that 65% of complex I flux and 49% of state 3 respiration is sensitive to CDK1 inhibition. Islets from ob/ob mice expressed more cyclin B1 and exhibited a higher sensitivity to CDK1 blockade, which reduced complex I flux by 76% and state 3 respiration by 79%. The ensuing reduction in mitochondrial NADH utilization, measured with two-photon NAD(P)H fluorescence lifetime imaging (FLIM), was matched in the cytosol by a lag in citrate cycling, as shown with a FRET reporter targeted to ß-cells. Moreover, time-resolved measurements revealed that in ob/ob islets, where complex I flux dominates respiration, CDK1 inhibition is sufficient to restrict the duty cycle of ATP/ADP and calcium oscillations, the parameter that dynamically encodes ß-cell glucose sensing. Direct complex I inhibition with rotenone mimicked the restrictive effects of CDK1 inhibition on mitochondrial respiration, NADH turnover, ATP/ADP, and calcium influx. These findings identify complex I as a critical mediator of obesity-associated metabolic remodeling in ß-cells and implicate CDK1 as a regulator of complex I that enhances ß-cell glucose sensing.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Transducción de Señal , Animales , Ciclo del Ácido Cítrico , Ciclina B1/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Sci Rep ; 8(1): 5456, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615678

RESUMEN

While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ2) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.


Asunto(s)
Carbono/metabolismo , Glucosa/química , Glucosa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/metabolismo , NADP/metabolismo , NAD/metabolismo , Humanos , Células MCF-7 , Oxidación-Reducción
8.
Diabetes ; 66(6): 1572-1585, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28193789

RESUMEN

Prostaglandin E2 (PGE2) is derived from arachidonic acid, whereas PGE3 is derived from eicosapentaenoic acid (EPA) using the same downstream metabolic enzymes. Little is known about the impact of EPA and PGE3 on ß-cell function, particularly in the diabetic state. In this work, we determined that PGE3 elicits a 10-fold weaker reduction in glucose-stimulated insulin secretion through the EP3 receptor as compared with PGE2 We tested the hypothesis that enriching pancreatic islet cell membranes with EPA, thereby reducing arachidonic acid abundance, would positively impact ß-cell function in the diabetic state. EPA-enriched islets isolated from diabetic BTBR Leptinob/ob mice produced significantly less PGE2 and more PGE3 than controls, correlating with improved glucose-stimulated insulin secretion. NAD(P)H fluorescence lifetime imaging showed that EPA acts downstream and independently of mitochondrial function. EPA treatment also reduced islet interleukin-1ß expression, a proinflammatory cytokine known to stimulate prostaglandin production and EP3 expression. Finally, EPA feeding improved glucose tolerance and ß-cell function in a mouse model of diabetes that incorporates a strong immune phenotype: the NOD mouse. In sum, increasing pancreatic islet EPA abundance improves diabetic ß-cell function through both direct and indirect mechanisms that converge on reduced EP3 signaling.


Asunto(s)
Alprostadil/análogos & derivados , Diabetes Mellitus/metabolismo , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/farmacología , Glucosa/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/efectos de los fármacos , Alprostadil/metabolismo , Animales , Ácido Araquidónico/metabolismo , Cromatografía de Gases , Perfilación de la Expresión Génica , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Interleucina-1beta/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos NOD , Ratones Obesos , Imagen Óptica , Fosfolípidos , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal
9.
Diabetes ; 65(9): 2700-10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284112

RESUMEN

Aging is accompanied by impaired glucose homeostasis and an increased risk of type 2 diabetes, culminating in the failure of insulin secretion from pancreatic ß-cells. To investigate the effects of age on ß-cell metabolism, we established a novel assay to directly image islet metabolism with NAD(P)H fluorescence lifetime imaging (FLIM). We determined that impaired mitochondrial activity underlies an age-dependent loss of insulin secretion in human islets. NAD(P)H FLIM revealed a comparable decline in mitochondrial function in the pancreatic islets of aged mice (≥24 months), the result of 52% and 57% defects in flux through complex I and II, respectively, of the electron transport chain. However, insulin secretion and glucose tolerance are preserved in aged mouse islets by the heightened metabolic sensitivity of the ß-cell triggering pathway, an adaptation clearly encoded in the metabolic and Ca(2+) oscillations that trigger insulin release (Ca(2+) plateau fraction: young 0.211 ± 0.006, aged 0.380 ± 0.007, P < 0.0001). This enhanced sensitivity is driven by a reduction in KATP channel conductance (diazoxide: young 5.1 ± 0.2 nS; aged 3.5 ± 0.5 nS, P < 0.01), resulting in an ∼2.8 mmol/L left shift in the ß-cell glucose threshold. The results demonstrate how mice but not humans are able to successfully compensate for age-associated metabolic dysfunction by adjusting ß-cell glucose sensitivity and highlight an essential mechanism for ensuring the maintenance of insulin secretion.


Asunto(s)
Envejecimiento/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Electrofisiología , Glucosa/metabolismo , Humanos , Técnicas In Vitro , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , NADP/metabolismo
10.
Virology ; 485: 128-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26245366

RESUMEN

Double-stranded DNA bacteriophages are highly pressurized, providing a force driving ejection of a significant fraction of the genome from its capsid. In P22-like Podoviridae, internal proteins ("E proteins") are packaged into the capsid along with the genome, and without them the virus is not infectious. However, little is known about how and when these proteins come out of the virus. We employed an in vitro osmotic suppression system with high-molecular-weight polyethylene glycol to study P22 E protein release. While slow ejection of the DNA can be triggered by lipopolysaccharide (LPS), the rate is significantly enhanced by the membrane protein OmpA from Salmonella. In contrast, E proteins are not ejected unless both OmpA and LPS are present and their ejection when OmpA is present is largely complete before any genome is ejected, suggesting that E proteins play a key role in the early stage of transferring P22 DNA into the host.


Asunto(s)
Bacteriófago P22/química , Cápside/química , ADN Viral/química , Genoma Viral , Proteínas Virales/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/farmacología , Bacteriófago P22/efectos de los fármacos , Bacteriófago P22/genética , Bacteriófago P22/metabolismo , Fenómenos Biomecánicos , Cápside/efectos de los fármacos , Cápside/ultraestructura , ADN Viral/genética , ADN Viral/metabolismo , Lipopolisacáridos/farmacología , Ósmosis , Polietilenglicoles/química , Salmonella typhimurium/química , Salmonella typhimurium/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...